Video/animation icon  Changes in microstructure of a shape memory alloy (bi-crystal of austenitic CuAlNi )

 
Use this resource: Use this resource icon
Link to this page: http://core.materials.ac.uk/search/detail.php?id=2720
View at:            
Resource type: Video/animation
Description: Changes in microstructure of a shape memory alloy being heat treated and also mechanically deformed. A bi-crystal of austenitic CuAlNi is cooled, causing transformation to the martensitic (2H orthorhombic) phase. The process is reversed in the second half of the video, as the specimen is heated again. The rate at which transformation occurs is controlled by heat flow effects. (The shear process itself tends to take place very rapidly.) The martensitic phase is internally twinned. This is very clear within the dark-coloured phase moving in from the left-hand side in the first part of this video. From TLP: Microstructural Changes. Video was kindly donated by Vaclav Novak and Petr Sittner, Department of Functional Materials Institute of Physics of the ASCR, Prague, Czech Republic
Keywords: microstructure • shape memory alloy • deformation
Categories: Science approaches
Science approaches > Microstructure
Properties > Mechanical & thermal > Shape memory
Testing, analysis & experimentation
Created by: DoITPoMS, University of Cambridge
Published by: DoITPoMS, University of Cambridge
License: This resource is released under the Creative Commons Attribution Non-Commercial Share Alike license (2.0 UK: England & Wales).
Creative Commons Attribution Non-Commercial Share Alike logo
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
  • noncommercial – You may not use this work for commercial purposes.
  • share alike – If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.
View the full legal code here.
Date created: 26 August 2009
Date added: 25 February 2010
Package:
Resource ID: 2720